
Understanding Evasive Script Tactics

An introduction to the technical details of
script-based cyberattacks

WHITE PAPER

Although evasion is a common practice throughout cybercriminal
activity, it is especially prevalent in the context of scripts. There are
several reasons scripts and their supporting applications—such as
javascript.js and wscript.exe or powershell.ps1 and powershell.exe—
are common targets for hackers and cybercriminals. Chief among
them is that most of these applications are present in the Windows®
operating system by default. Known as Living off the Land Binaries or
“LoLBins”, these default applications enable attackers to carry out an
attack without needing to download any foreign applications, which
could be detected by an installed antivirus.

There are more than a dozen highly exploitable applications in the
Window OS, and several more which are commonly installed, such as
Office and Java. LoLBins are attractive to hackers because they can
be utilized either by a script or though the command line interface.
When using a script, there are many ways to obfuscate the content of
that script, making it much more difficult to analyze or detect.

2

Another increasingly common evasion tactic used by scripts
and other malware is in being file-less. Scripts can allocate
memory and write executing code into that memory space
without creating a file on disk. By executing in memory
without a file on disk, these types of scripts are much harder
to detect, though remaining persistent after a reboot often
requires that the script to be executed again. Unsurprisingly,
hackers can use several evasive techniques to embed
script contents into load points to achieve post-reboot
persistency.

While relentless innovation and creativity by hackers
has made evasive tactics and new techniques common,
understanding the framework in which their tactics operate
enables us to design more effective defenses against even
the most persistent attacker. What follows is our analysis of
evasive script tactics, as well as strategies for defense.

Microsoft® AMSI
To combat the growing prevalence of obfuscated scripts,
Microsoft developed the Anti-Malware Scan Interface
(AMSI) for Windows® 10, which helps with the obfuscation
problem by decoding the underlying commands of a script
during execution. In 2018, they extended its support to
cover Office macros and help stem the increasing number of
malicious scripts in Microsoft® Excel and Word. While AMSI
is used by Windows Defender, Microsoft has also extended
it to third party software providers, who can adopt their own
policies for detection.

The core benefit of AMSI lies in the AmsiSession and
AmsiScanBuffer functions, which allow the script to be
interrogated as it executes. This is important as it provides
visibility into the real command that will be executed next
before it has a chance to run. As an example, consider the
following obfuscated macro code:

As execution passes through AMSI, the de-obfuscated
command can be analyzed synchronously to prevent the
malicious command from executing, in this case downloading
a malicious .msi package.

While AMSI provides a powerful toolset to decode the true
intent of obfuscated scripts, this feature is only available
in Windows 10. Additionally, criminals have already begun
devising techniques to circumvent AMSI, so it should not
be relied upon exclusively, but should instead be used in
conjunction with other protection methods.

Script Evasion Techniques
Cybercriminals use a variety of evasive techniques to
facilitate a successful attack, and often combine them to
increase their chances of avoiding detection. In this section,
we will outline some of the more commonly used methods.

LolBins
Living off the Land Binaries, or LoLBins, are applications
which are present in the Windows® operating system by
default. They provide an attacker all the functions necessary
to carry out an attack, without needing to download anything
new onto a target system. By exploiting existing default
applications, attackers greatly decrease the likelihood that
their activities will be detected or blocked. Criminals typically
access these applications in one of two ways: either by a
direct command line interface or via a script that executes a
series of commands.

The most commonly exploited LoLBins are powershell.exe,
bitsadmin.exe, certutil.exe, psexec.exe, wmic.exe, mshta.
exe, mofcomp.exe, cmstp.exe, windbg.exe, cdb.exe, msbuild.
exe, csc.exe and regsvr32.exe.i Even with this extensive list,
there are dozens more. Additionally, each of these is part
of a default Windows deployment, but there are many other

Image source:
microsoft.com/security/blog/2018/09/12/office-vba-amsi-parting-the-veil-on-malicious-macros

Win 32
API Layer

PowerShell

AMSI.h + AMSI.lib + AMSI.dll

Amsi.h + Amsi.dll
IAntimalware: :Scan()

MpEngine.dll
(Defender Scan Engine)

MpSvc.dll
(Defender RPC Server)

Provider Class
registration

Windows Defender Provider Class
IAntimalwareProvider: :Scan()

RPC

3rd Party AV
Provider Class

AmsiScanBuffer()
AmsiScanString()

VBScript Other
Application

Other
Application

MsMpEng.exe
(Windows

Defender Service)

COM
API Layer

AV Provider
Layer

3

common applications that are relatively easy to exploit if present, such as java.exe, winword.exe, and excel.exe.

Criminals can use LoLBins to carry out common steps of an attack, such as creating persistency, moving laterally, bypassing
user access controls, and extracting passwords or other sensitive information.ii Because these applications are already present
in the OS, their actions are unlikely to be noticeable or suspicious, so using them makes for a very effective evasion strategy.
Without good visibility into the exact commands being executed by these processes, it can be very hard to detect malicious
behavior originating from LoLBins.

Most Commonly Exploited LoLBins

Script Content Obfuscation
Obfuscation is an evasion technique that hides the true behavior of a script. There are several native functions in scripting
languages that help developers obfuscate sensitive code, as well as dozens of obfuscation tools created and used by hackers
to hide the true nature of their malicious code. See the following images of obfuscated vs. de-obfuscated code for examples.

Application Name Description

powershell.exe Configuration management and task automation framework that consists of a command-line shell and a related scripting
language

bitsadmin.exe Command-line tool used to create, download or upload jobs, and to monitor their progress

certutil.exe Command-line program used to dump and display certification authority (CA) configuration information, configure Certificate
Services, backup and restore CA components, and verify certificates, key pairs, and certificate chains

psexec.exe A lightweight telnet-replacement that lets you execute processes on other systems, complete with full interactivity for console
applications, without having to manually install client software

wmic.exe Command-line utility to access Windows Management Instrumentation (WMI)

mshta.exe Runs the Microsoft HTML Application Host, a utility responsible for executing HTA (HTML Application) files in the Windows OS

mofcomp.exe Managed Object Format compiler parses a file containing MOF statements and adds the classes and class instances defined in
the file to the WMI repository

cmstp.exe Installs or removes a Connection Manager service profile. Used without optional parameters, cmstp installs a service profile
with default settings appropriate to the operating system and to the user's permissions

windbg.exe Kernel-mode and user-mode debugger that is included in Debugging Tools for Windows

cdb.exe Console debugger that is included in Debugging Tools for Windows

msbuild.exe A build tool that helps automate the process of creating a software product, including compiling the source code, packaging,
testing, deployment and creating documentations

csc.exe C# command-line compiler

regsvr32.exe Registers .dll files as command components in the registry

Figure 1: Dridex script example showing PowerShell obfuscation

4

Figure 2: Same example de-obfuscated

Figure 3: Morpheus script example showing VBS obfuscation

5

Figure 4: Same sample, de-obfuscated (note: the de-obfuscated content is actually a PowerShell script)

Dynamic Content
Dynamic content is content that can easily change based
on how it is retrieved. A common example in cybercrime
is when script code is hosted on PasteBin or DropBox,
which is consumed as part of a script attack. This has the
added evasive benefit that it is very easy to change the
content behind a PasteBin or DropBox link. These are just
two examples, but Webroot threat researchers have seen
dynamic content stored in very creative ways, including
using Twitter, GitHub, AWS, and compromised web servers.

Macro Obfuscation
Like script content obfuscation, criminals use several
evasive techniques to conceal malicious macro code. Some
of these are as simple as using an obfuscation tool to make
the macro code difficult to interpret, but some are much
more complex, such as a technique called VBA Stomping.
VBA Stomping deletes the macro code and leaves compiled
macro code known as p-code in its place. This is an
effective evasion technique for solutions which rely on
analyzing macro code for detection.

In a recent in-the-wild example of macro obfuscation, a
malicious macro was hidden in an Excel worksheet with
its properties set to very hidden, making it difficult for the
victim to know there might be something amiss.iii The hidden
worksheet contained bits of the macro code which were
sewn together using Excel functions to create the full macro.
The really clever part of this example was that the macro
could check to see if it was being executed in a sandbox,
and either stop executing or attempt to trick the user into
downloading and running malware, depending on the
circumstances.

First, the macro would “listen” to see if a computer mouse
were being used or if audio was working. But, since these
functions are easy to simulate in a sandbox, the macro
would then check the macro execution policy settings.
Typically, this policy is set to disable all macros with
notification, except in sandbox environments, in which
enable all macros is likely the chosen setting. If the macro
determined it were being executed in a sandbox, it would
exit the spreadsheet. But, if the policy were set in a way
that indicated a real user’s device, the macro would display
an alert. If clicked, the alert would download and run a
malicious payload.

Nesting Doll Attacks
Nesting Doll attacks are named after Russian nesting
dolls, or Matryoshka dolls, which are designed so that
each doll contains a smaller doll, which, when opened,
reveals yet another smaller doll, and so on.

Effectively, these attacks jump between multiple
applications to launch attacks within an attack, hence the
name. As an example, an attack seen by Webroot threat
researchers involved a Microsoft® Word document file that
contained a macro which would create and run a .hta file.
Interpreted by MSHTA, the .hta script acts as a beacon
to receive dynamic content from a remote server, which
could come in the form of a malware payload or additional
attack stages.

Fileless and Evasive Execution
An increasingly popular method of evasion is called
fileless execution. Effectively, this happens when a script
allocates memory, writes shellcode to that memory, and
then passes control to that newly allocated memory.
These actions result in malicious functions in memory, all
without needing an associated file on disk, making finding
the origin of an infection very difficult.

The challenge here is that, if a system is rebooted, the
memory gets cleared, thereby ending the infection’s
execution. Execution persistence remains a major concern
for hackers, but they have discovered several evasive
techniques to re-infect that still do not require a file. A
few examples are script content hidden in scheduled
tasks, registry load points, and even appended to .LNK
files. As with other evasive techniques, new methods are
frequently discovered.

PowerShell Evasion, PowerShell-less, Embedded
Scripts and Downgrade Attacks
PowerShell is a very powerful LoLBin, which is often
used by hackers to facilitate an attack. To combat this,
IT admins are increasingly placing access controls on
PowerShell and users’ ability to access it. In situations
where PowerShell access has been restricted, hackers
have devised several tools to regain access.

One such example is PowerLine, which allows an attacker
to build a custom application that not only contains
PowerShell functionality, but can also embed scripts for
preloaded access, furthering the evasiveness of this

6
© 2020 Open Text. All rights reserved. OpenText, Carbonite, and Webroot are each trademarks of Open Text or its subsidiaries. All other trademarks are the properties of their
respective owners. WP _ 061920

About Carbonite and Webroot

Carbonite and Webroot, OpenText companies, harness the cloud and artificial intelligence to provide comprehensive cyber resilience solutions for businesses, individuals, and managed
service providers. Cyber resilience means being able to stay up and running, even in the face of cyberattacks and data loss. That’s why we’ve combined forces to provide endpoint protection,
network protection, security awareness training, and data backup and disaster recovery solutions, as well as threat intelligence services used by market leading technology providers
worldwide. Leveraging the power of machine learning to protect millions of businesses and individuals, we secure the connected world. Carbonite and Webroot operate globally across North
America, Europe, Australia, and Asia. Discover cyber resilience at carbonite.com and webroot.com.

Contact us to learn more – Webroot US

Email: wr-enterprise@opentext.com

Phone: +1 800 772 9383

approach.iv Other examples include PowerShdll, which is
an all-DLL version that uses PowerShell automation DLLs to
avoid using PowerShell.exe, and NoPowerShell, which is a
C# port that provides PowerShell-like commands.

Another popular method of evading PowerShell monitoring
is to use an older version of PowerShell, typically v3 or
earlier, which provides less visibility into PowerShell actions
and makes them more difficult to monitor or block. This
can be as simple as adding a -version # to the PowerShell
command.

Staying Protected
In addition to AMSI in Windows, it’s important to use a
security solution that can detect and block evasive and
obfuscated attacks. In spring of 2020, Webroot began
releasing a series of enhancements to Webroot® Business
Endpoint Protection, which include a new Evasion Shield
policy. This shield leverages AMSI, as well as new,
proprietary, patented detection capabilities to detect, block,
and quarantine evasive script attacks, including file-based,
fileless, obfuscated, and encrypted threats. It also works to
prevent malicious behaviors from executing in PowerShell,
JavaScript, and VBScript files, which are often used to
launch evasive attacks.

While using endpoint security with evasive script protection
is decidedly necessary, it’s not the only step businesses
should take. There are several other simple steps that can
help ensure an effective and resilient cybersecurity strategy.

• Keep all applications up to date
In addition to patching and updating the Windows®
operating system regularly, all Windows and third party
applications should be regularly checked and updated
to decrease the risk of outdated software containing
exploitable vulnerabilities.

• Disable macros and script interpreters
There are very few cases in which macros are truly
necessary. Administrators should ensure macros and
script interpreters are fully disabled to help prevent script-
based attacks. You can do this relatively easily through
Group Policy or AppLocker.

• Remove unused 3rd party applications
Applications such as Python and Java are often
unnecessary. If present and unused, simply remove them
to help close a number of potential security gaps.

• Educate end users
End users continue to be a business’ greatest
vulnerability. Cybercriminals specifically design attacks
to take advantage of their trust, naiveté, fear, and general
lack of technical or security expertise. For example, in
the Macro Obfuscation section, we outlined an attack
that monitors a given environment to ensure it’s a real-
world device and not a sandbox, then launches an alert
for the user to click on, which then downloads and runs a
malicious payload. By educating end users on these types
of risks, how to avoid them, and when and how to report
them to IT personnel, businesses can drastically improve
their overall security posture.

Cybercriminals continue to innovate and evolve their
attacks with astonishing speed and creativity. At Webroot,
we recognize that it’s the responsibility of cybersecurity
providers like ourselves to research these new tactics and
innovate just as quickly, to help keep today’s businesses
safe from tomorrow’s threats. The new Webroot® Evasion
Shield provides a new framework to respond to changes
in the threat ecosystem at an even faster pace, but there’s
always more work to be done.

For more information about the latest cyber threats, the
techniques they use, and what Webroot is doing to combat
them, visit the Webroot Threat Blog at webroot.com.

i “Living off the Land Binaries and Scripts (and also Libraries)” (April 2020)
 https://lolbas-project.github.io/

ii “Hunting For Lolbins” (November 2019)
 https://blog.talosintelligence.com/2019/11/hunting-for-lolbins.html

iii “COVID-19, Excel 4.0 Macros, and Sandbox Detection – #zloader” (April 2020)
 https://clickallthethings.wordpress.com/2020/04/06/covid-19-excel-4-0-macros-and-sandbox-
detection/

iv “How To Run PowerShell Commands Without Powershell.exe” (September 2019)
 https://medium.com/@Bank_Security/how-to-running-powershell-commands-without-power-
shell-exe-a6a19595f628

http://carbonite.com
http://webroot.com

